
CSCI-E28 REQUIRED WORK / GRADING / STANDARDS

Projects, Final Exam, and Weights

There are six programming assignments and one writ-

ten, proctored final exam. The final exam is open

notes and open book, but you may not use any elec-

tronic devices during the exam. The six programming

assignments count for 61% of your grade, the final

exam counts for 35% of the grade, and class participa-

tion counts for 4% of the grade.

Your grade for the course should reflect what you

know and can do as the course ends. I think of your

grade as a very brief letter of recommendation to your

next instructor or a possible employer. Therefore, I

may adjust these fractions if your final exam shows

very significant improvement or very significant de-

cline relative to your assignments.

If the final exam shows significant improvement, that

might mean you struggled earlier in the term but fi-

nally figured it out near the end.

Similarly, if your work on the final exam is signifi-

cantly weaker than your work on programming as-

signments, that might mean you forgot most of what

you knew during the term or you did not internalize

enough of the ideas to draw on them during an exam.

In both cases, I may put more weight on the final

exam so the course grade reflects more accurately

where you are at the end.

Program in C for Unix/Linux

All projects for this course are programming assign-

ments. You may write and test the code on any sys-

tem, but you must make sure your code is copied to,

compiles on, runs on, and is submitted from the

course server: cscie28.dce.harvard.edu . We expect

you to write in C, the language of Unix system pro-

gramming. Do not submit solutions in other lan-

guages.

What We Look For

Homework assignments are graded on a 100 point

scale. Those 100 points are divided into:

Correctness works correctly

Modularity file/function decomposition

Efficiency good use of resources

Clarity easy to follow

Documentation comments, Design Docs

Correctness counts for 70 points, the rest for 30

points. Producing a working program is the first step.

A working program, then, must be updated, fixed,

reused, and read by other people.

If your program works correctly but is poorly de-

signed, you get a C. See the section on Design and

Coding Standards for more detail.

Letter Grades

The Extension School website states the meaning of

letter grades at Harvard. Here are the posted stan-

dards for grades of A, B, and C:

A and A-

Earned by work whose superior quality indicates a

full mastery of the subject, and in the case of A,

work of extraordinary distinction. There is no

grade of A+

B+, B, and B-

Earned by work that indicates a strong compre-

hension of the course material, a good command

of the skills needed to work with the course mate-

rials, and the student’s full engagement with the

course requirements and activities.

C+, C, and C-

Earned by work that indicates an adequate and sat-

isfactory comprehension of the course material

and the skills needed to work with the course ma-

terials, and that indicates that the student has met

the basic requirements for completing assigned

work and participating in class activities.

I do not grade on a curve. Everyone can get an A, and

ev eryone can flunk. Your success has no effect on the

grade of your classmates.

Academic Integrity

The following language is from the DCE website:

Plagiar ism

Plagiarism is the theft of someone else’s ideas and

work. It is the incorporation of facts, ideas, or

specific language that are not common knowl-

edge, are taken from another source, and are not

properly cited.

Whether a student copies verbatim or simply re-

phrases the ideas of another without properly ac-

knowledging the source, the theft is the same. A

computer program written as part of the student’s

academic work is, like a paper, expected to be the

student’s original work and subject to the same

20 Jan 2024 page 1

Homework Standards

standards of representation. In the preparation of

work submitted to meet course, program, or

school requirements, whether a draft or a final

version of a paper, project, take-home exam, com-

puter program, placement exam, application es-

say, oral presentation, or other work, students

must take great care to distinguish their own ideas

and language from information derived from

sources. Sources include published and unpub-

lished primary and secondary materials, the Inter-

net, and information and opinions of other people.

Extension School students are responsible for fol-

lowing the standards of proper citation to avoid

plagiarism. A useful resource is The Harvard

Guide to Using Sources prepared by the Harvard

College Writing Program and the Extension

School’s tips to avoid plagiarism.

Inappropr iate Collaboration and Other Assist-

ance

Collaboration on assignments is prohibited unless

explicitly permitted by the instructor. When col-

laboration is permitted, students must acknowl-

edge all collaboration and its extent in all submit-

ted work. Collaboration includes the use of pro-

fessional or expert editing or writing services, as

well as statistical, coding, or other outside assist-

ance. Because it is assumed that work submitted

in a course is the student’s own unless otherwise

permitted, students should be very clear about

how they are working with others and what types

of assistance, if any, they are receiving. In cases

where assistance is approved, the student is ex-

pected to specify, upon submission of the assign-

ment, the type and extent of assistance that was

received and from whom. The goal of this over-

sight is to preserve the status of the work as the

student’s own intellectual product.

The following language is for CSCI-E28:

The work you submit must be your own work.

You may base your work on samples from class

or examples from texts. We encourage students

to discuss ideas, problems, techniques.

Do not show other students your code. Do not

look at code written by other students.

Your homework should be all your own work or a

combination of your own work and your synthesis

and extension of examples. Please state the

sources of any piece of code you use, including

code from the textbook and class samples.

Do Not Use Generative AI

Course Goals: The goals of CSCI-E28 are to

help you understand the Unix/Linux system API

and to improve your programming and design

skills. In the same way that using Google Trans-

late to do assignments for a course in French lan-

guage and culture prevents students from actually

learning French language and culture, using Chat-

GPT or other generative AI system to produce

syntax, algorithms, and problem-solving prevents

you from actually learning syntax, algorithms,

and problem-solving.

In order to achieve these goals, we expect stu-

dents to practice syntax, algorithm design, and

problem solving. We expect that all work stu-

dents submit for this course will be their own.

We specifically forbid the use of ChatGPT or any

other generative artificial intelligence (AI) tools at

all stages of the work process, including prelimi-

nary ones. Violations of this policy will be con-

sidered academic misconduct. We draw your at-

tention to the fact that different classes at Harvard

could implement different AI policies, and it is

the student’s responsibility to conform to expecta-

tions for each course.

Submitting Homework

Homework is due by midnight on Saturday evenings.

There is a 10 point penalty for each day late you turn

in an assignment. You will submit code and text elec-

tronically. Please see the course website for an expla-

nation of submitting your work by computer.

Creating Sample Runs

For most projects we require a sample run of your

program. Use the script command to capture sample

runs of your program. Script records everything that

appears on the screen and saves it all to a file.

To make a script, type script. The computer will

print a message and print the shell prompt. Now run

your program. Type "exit" at the prompt when you

wish to stop recording. Unless you specify some

other name, script will save everything in a file called

"typescript", so include that file. A sample session is

shown below:

$ script
Script started, file is typescript
$ cat foo.c
. . .
$./a.out
. . .
$ exit
Script done, file is typescript

20 Jan 2024 page 2

Homework Standards

Late Days and Catastrophes

Your assignments will lose 10 points per day late. But

we know things take longer than planned, and we also

know that big problems come up.

If a project takes longer than you expect or if some-

thing serious happens, you do not have to ask for an

extension. You get four late days and one catastrophe

included for free. Here’s how it works.

Four Late Days

Across all the assignments, you can use four late days

without penalty. You can turn in one assignment four

days late, you can turn in four assignments each one

day late, or any combination.

Catastrophes

But sometimes your kid gets the flu or your job asks

ev eryone to work an extra twelve hours a day to meet

a deadline. In other words, some catastrophe. We al-

low one catastrophe per term. If you have one, you

must submit a good-faith effort for that project (which

means at least 60% or the requirements). This late

submission must be handed in no later than a week

before the last project due date. We then drop that

grade. If you do not make a good faith effort, we give

you zero for that grade. The late days are not used for

the catastrophe.

The only exceptions to this policy are:

(a) We will not drop hw5

(b) You cannot be late for hw6

At the end of the term I compute all combinations of

late day deductions and catatrophes and use the com-

bination that produces the highest grade.

Design and Coding Standards

CSCI-E28 is a computer science course that counts to-

ward the degree in software engineering. We want to

help you learn and improve:

• Unix systems programming ideas and skills

• Computer science ideas

• Software engineering ideas and skills

Therefore we grade your work with an eye on each of

these three areas.

Unix/Linux Systems Programming

Unix systems programming ideas include ideas such

as file systems, processes, interprocess communica-

tions, concurrency. Unix Systems programming skills

include how to traverse a directory tree, how to create

a process, how to send messages between running

programs, and how to coordinate actions of multiple

processes. We will grade you on how well you under-

stand and use these ideas and skills.

Computer Science

Computer science is the field of solving problems by

developing and analyzing algorithms machines can

perform. The field includes knowing and using algo-

rithms and data structures effectively. We look for ef-

fective and efficient algorithms and data structures.

These standards apply at the large level such as decid-

ing on a recursive vs iterative solution and at the small

level like allocating a temporary string using malloc

vs using local a local variable. (Hint: malloc is an in-

efficient choice)

Design and Engineering

Please follow these five rules for writing clear, read-

able, maintainable code:

Rule 1: Modular and Layered

Rule 2: Short Functions: 30 lines x 80 cols max

Rule 3: Comments: File, Function, Paragraph

Rule 4: Spaces, Blank Lines, Indenting

Rule 5: Clear, Concise Names

Rule 1: Modular and Layered

The most important rule is that your code be modular

and layered. This rule applies to code and to data.

Here are the details. Your program will be composed

of one or more source files. Each file represents one

component of the program. Each file consists of one

or more functions, each represents one component of

the file.

In our first big example in lecture two, we build a ver-

sion of the Unix who command. This program con-

sists of two files: a main file with logic to read and

process user login records and a buffering library file

to perform low-level data input from the disk. That

main function contained a loop to read and display

data. The code to display the data was at a lower

layer in its own function, and the code to display the

date and time was at a yet lower level also in its own

function.

This separation of the solution into functional units

([a] main logic and [b] low-level buffering) is what we

mean by modularity. The term layering refers to

keeping each level in the solution in its own module.

The main program knows it will be able to read login

20 Jan 2024 page 3

Homework Standards

records from the disk but does not care about the de-

tails of how that gets done. The low-level disk buffer-

ing code has one job: read disk data in chunks from

the disk and deliver disk records in smaller units to its

client. The low-level buffering code does not care

what its client does with the data.

NO GLOBAL VARIABLES: "Modularity and layering"

also applies to variables. Each function uses local

variables to do its work. Local variables appear when

the function is called and vanish when the function

ends. A file may have static state variables that are

shared by the functions in that file. Av oid Global

Variables: there is rarely any reason to make data

shared by all functions in a program. Global variables

undermine modularity and layering. The best way for

functions to communicate is through the pass values

in, return a value back mechanism.

Design your programs as collections of layers/mod-

ules. Implement each module as a separate file. This

makes your code more reusable, testable, maintain-

able.

Rule 2: Short Functions: 30 lines max

The principles of modularity and layering also apply

to the contents of each file. A file contains functions.

Each function must do one thing and express one

layer of abstraction of the solution.

A function must be short enough to be viewed and un-

derstood in a single terminal window. Thus: no more

than 30 lines tall and no more than 80 columns wide.

We grade homework with your code in one window

and a grading scorecard in another. Those two win-

dows must fit side by side on one screen.

If a function is too long, it is probably doing too

much. That extra work adds complexity and increases

the chance of errors. If a function gets too long, split

it into smaller functions, each with a specific purpose

and a specific level of abstraction. Writing short func-

tions can take a lot of effort. The work is worth it.

Rule 3: Comments: File, Function, Paragraph

Comments are written by the programmer for

him/herself to plan and review code and also for the

next programmer who has to use and/or maintain the

code. Clear writing helps produce clear code.

File Comments A file is a module that implements

one component of your solution. The top of each

code file must contain a summary of the title, purpose,

main features of the module, and brief descriptions of

the data structures used by that module.

Say you are a new person on a team and are given a

module to debug or extend. You could read the code

to try to figure out what the programmer was doing,

or you could read a nicely written description of the

module -- a `quick start guide´ -- and understand the

module quickly and easily. Which one would you

prefer to do? Guess which one we, as graders and

teachers, prefer.

Function Comments A function is a module within a

module. Every function has a specific purpose. Pre-

cede each function by a comment that includes:

/* is_logname_valid(const char *s)
* purpose: determine if string represents
* a valid logname on system
* args: string
* rets: 1 if true, 0 if not
* note: this function ignores case
*/
int is_logname_valid(const char *s)

A function is a black box that is passed data, does

something, and returns a result. The function com-

ment describes the interface. The code should be

short enough and clear enough so the actual algorithm

does not get described in the function comments. But,

any subtle logic or special handling that is not clear

deserves a brief description. Reading code should not

be the same as reading a mystery novel. Spell out

what is going on.

Internal Comments As just mentioned, in a 30-line

function with clear layout (see below) and good nam-

ing, the logic is usually pretty easy to follow. None-

theless, please add brief comments as needed to help

the reader see any important or tricky steps.

Rule 4: Spaces, Blank Lines, Indenting

Use Spaces: Donotwritecodethatlookslikethis.

Instead, use space characters to separate words and

operators. By doing so, you save the reader the extra

work of parsing your code into words and operators.

Consider:

/* not readable */

if(x->prev->val<=x->val||p!=x)

/* much better */
if (x->prev->val <= x->val || p != x)

Got it?

Use Blank Lines: Just as blank spaces between words

and operators increases readability horizontally, blank

lines between paragraphs increases readabililty verti-

cally. Imagine if the document you are now reading

20 Jan 2024 page 4

Homework Standards

were written without any blank lines between para-

graphs.

Indent 8 spaces (4 if you insist) All conditional

blocks, function bodies, loop bodies, etc, must be in-

dented relative to the control line. Please use 8 char

tabs (or 4 if you object to 8). Never fewer. Use tabs

or spaces as you please but be consistent.

Rule 5: Clear, Concise Names

Function names and variable names must be explana-

tory but not verbose. For example:

num_users

is fine but

number_of_users_logged_in

is too wordy.

20 Jan 2024 page 5

