
csci-e28

Project 0: more03

Due: This Sunday Night at 11:59PM

Last Update: Sun 2 Feb 2025 15:40 PM

Purpose of Assignment

There are three main purposes of this assignment.

The first is to help you see if you are prepared for

the course before the deadline to drop for a re-

fund. If you find this project very difficult, you

will find the course very demanding. Which does

not mean you should not take the course. We can

help you figure out, based on your problems, what

you need to learn and whether that is realistic.

The second purpose is to show you the typical

model of a solution. This program has two files;

you have to be able to work with multi-file pro-

grams. This project has a Makefile; you have to

submit a Makefile with each assignment. This

project has a design document, called Plan. We

require a plan for each assignment.

The final purpose is to make sure you are able to

use the system to compile and run C programs.

Introduction

In the first class, we wrote two versions of the

Unix more file-viewing tool. The first version,

more01.c, read user commands from standard in-

put and displayed files listed on the command

line. It had a serious problem: it did not work

correctly when used at the end of a pipeline, as in:

last | more01

In this pipeline, more01, seeing no files listed on

the command line, reads data from standard input.

The problem is that the program reads user com-

mands from standard input, too.

The solution, coded in more02.c, is to have the

program read user commands from the terminal

device regardless of source of text to display. Ev-

ery Unix system has a file called /dev/tty which is

an interface to the user’s keyboard and display.

Any data read from this file comes from the user’s

keyboard. Any data written to this file appears on

the user’s display.

more02.c solves this problem well.

Problems with more02.c

But more02.c has other problems. Specifically:

[a] The program is hard-coded for a 24-line

display, once a standard. These days, a ter-

minal window can be resized to any number

of rows. A better version will ask the sys-

tem for the number of lines in the terminal

window and use that number to display a

`page´ of text.

[b] The program does not adapt to window

sizes while it is running. Say the terminal

window starts with 24 lines, but after seeing

the first page of text, the user resizes the

window to 38 lines then presses the space

bar. A better version will adapt to the cur-

rent size of the screen, even if that size

changes after the program starts.

[c] The program accepts user input SPACE, En-

ter, and q to mean see next page, see next

line, and quit. But, because of the default

settings of the Unix keyboard input sytem,

the user has to press Enter to send the key-

strokes to the program. (The reason is that

the system allows the user to correct typing

errors before transmitting a line of text.)

Also, more02 displays the q or space char,

while regular more does not. A better ver-

sion of the program will, like the regular

system versions of more, receive each key

as it is pressed, and not display the key.

[d] The program assumes printing one input

line uses one line on the output screen.

But, if a line is longer than the screen

width, that line uses more than one line on

the output screen. A better version will

handle lines longer than screen width cor-

rectly. Test this with the system version of

more to see what ’correctly’ means. Exper-

iment with a file with long lines to see ex-

actly how regular more handles these. Your

program should behave just like regular

more. Do not worry about tabs.

[e] more02 leaves the more? prompt on the

screen when the user presses the Enter key.

printed 2 February 2025 page 1



more03

It also leaves the prompt on the screen

when the user presses space, but it can be

scrolled off the top. A better version will

not have leave more? prompts on the

screen.

The Assignment

Write a version of more, called more03.c based

on the program more02.c we looked at in class.

Also, answer the design question posed below in

The Details.

Add features [a], [b], [c], [d], [e] listed above to

more02.c using some functions we provide in a

separate file called termfuncs.c.

One of the functions tells the caller the dimen-

sions of the terminal window. The other function

reads one key from the keyboard without requir-

ing the user to press Enter.

Note that get_term_size returns an error code if

that call fails. Make sure your version checks for

and does something sensible in case of error.

Compare Your Program to the System Version

Compare your more03 to the standard version of

more on the system. To see what your program

should do, simply run the regular version of more

and see how it behaves. Try to get your version to

behave the same way.

The Details

Follow these steps to get started.

1. Get an account on the Harvard server .

Get a Harvard Key at https://key.harvard.edu .

2. Then use that account name and password to

login to your account on cscie28.dce.har-

vard.edu . If you have Linux or OSX on your

machine, open a terminal and use ssh to con-

nect. On Windows, you can use ssh from the

cmd prompt windown. On Windows you can

also download puTTY or other ssh client and

use that program to connect to

cscie28.dce.harvard.edu.

3. Browse to cscie28.dce.harvard.edu/˜dce-

lib215 and select the "Projects" link. Read

the documents linked at the top about proce-

dures and policies for writing and submitting

programming projects.

4. Make a directory for the assignment called

more03. Type:

mkdir more03
cd more03

5. Copy some starter files to this directory: Type:

cp ˜dce-lib215/hw/more03/files/* .

note: there is a dot at the end of that command

6. Now copy more02.c to a new file: more03.c

7. Examine files: termfuncs.c, termfuncs.h,

Makefile, Plan, README, and more02.call-

graph.

8. Edit more03.c to add the features required.

At the top of more03.c, add the line:

#include "termfuncs.h"

Try one change at a time; do not do all at

once. It is easier to debug one problem than

to debug three at once.

9. After each change, build the tool again, and

test it: Type:

make
./more03 /etc/passwd *.callgraph
last | ./more03

Please make more and better test data. Sub-

mit some additional test data with your code.

Important: Test your program carefully. The

original version has two subtle bugs (two I

know about). State those bugs in the

README file. Correct those bugs. What are

possible users errors, special cases, "edge-

cases"?

10. Design Question: The system version of

more displays the percentage of the file

shown. For example, type more /etc/passwd

to see the more prompt contains a percentage.

You do not have to add this feature to your

program. Instead, describe in your Plan file

an outline of how you would add this feature.

What information do you need to do this, and

how does the program change to provide this

feature? Again, you do not have to imple-

ment the feature, just discuss design plans.

11. Update the files called Plan to reflect accu-

rately the design and logic of your solution.

Include in Plan any problems or clever ideas

you want to point out. Also include your de-

sign ideas for adding the percentage display.

12. Update the file called README .

13. Create a sample run. Type:

printed 2 February 2025 page 2



more03

script
make clean
make
./more03 more03.c
last | ./more03
exit

Submitting Your Work

When done, submit your work: Type:

˜dce-lib215/handin more03
Note: you must be in the directory with the files

you are submitting.

Note on Design/Documentation

The sample starter code, more02.c, is a good ex-

ample of the coding standards for commenting,

layering, and the format we expect in your code.

Please use this as a guide. Note: the commenting

in your code must be sufficient but does not have

to be as extensive as that in the sample code.

printed 2 February 2025 page 3


