
class 6: Complex Data Structures +
 Dynamically Allocated Memory

News:

hw3 due Sun at 1159pm
Section - Brandon
 -- helps with homework
 -- please attend and bring questions
Off Hrs Sat(3-4:30) and Sun(2-5) Bruce

hw4 out on Sun or Mon with 2 weeks to do it.

Warmup Question: What is wrong?

int main(void)
{
 char *array[SIZE];
 char input[SIZE]; /* a string for input */
 int counter = 0;
 char line[SIZE]; /* a string from input line */

 while (fgets(input, SIZE, stdin) != NULL) {
 sscanf(input, "%s", line);
 array[counter] = line;
 counter++;
 }
 for (int i = 0; i < counter; i++) {
 printf("%s\n", array[i]);
 }
 return 0;
}

Class 6: Dynamic Memory Allocation and Management

Today's Project: Frequency Tables
Today's Data Structure: a Dictionary
Today's Ideas: dynamic memory allocation
Today's Functions: malloc, realloc, free

recall the big picture:

copyright (c) 2023 Bruce Molay

More Scripts and Web Interfaces: train- freq

Google shows how busy a store is by hour. Can we do the
same thing for number of trains stopping at a station?

Question: How many trains stop at a station for each hour
of the day? (Similar to busiest- time problem on hw0.)

Each entry in the sched file has a time as HH:MM, so we
can extract the HH part and count how may times each
hour appears.

 a) Select the entries for a given station, dir, day
 b) Cut out the hour portion of the time
 c) Count the number of instances of each hour
 (frequency)

Three parts: form, connector, tool:

train- freq.html: get user request
train- freq1.cgi: extract request, call train- freq
train- freq: select rows, count hours

Version 2: use tt2ht for table output

A Common Problem: Frequency Tables

Computers are often used to compute frequency tables:
trains by hour
baby names by decade
census: people by state
site hits per day
words/letters/trigrams in a document

 author identification, cryptography, language ident.
melodic/harmonic patterns: composer ident

The Abstract Model:

input: a list of items: words, trigrams. names, chord changes
output: a list of items with counts

words -> store and count -> freq table

One Solution: sort | uniq - c

words ->
#!/bin/sh
sort | uniq - c -> freq table

wf

But: we only use sort because uniq - c only requires it.
Q: Can we count without sorting? It might be faster.

Another Solution: A dictionary

init_table()
in_table()
insert()
lookup()
update()
firstword()
nextword()

We need to store items and
corresponding counts.
We need a storage system
and operations for
that system.

Storage System: Dictionary: string, count pairs

init_table()
in_table()
insert()
lookup()
update()
firstword()
nextword()

Another Solution: We Write Our Own wordfreq Program

We need to store items and
corresponding counts.
We need a storage system
and operations for
that system.

// count freqs
 while(get_next_word)
 if (word is in table)
 add 1 to count for word
 else
 add to table, count = 1

// report freqs
 go to start of table
 while(is another word)
 print word, its count

words ->

-> freq table

Main Logic:

Storage System: Dictionary: string, count pairs

a dictionary

To Compile a Multi- file Program:

 cc - Wall - Wextra wlmain.c wlfiler1.c - o wf1

Simply list all the source files on the command line.

Program Structure: main file and helper file

Five Implementations of a table of words and counts:

init_table()
in_table()
insert()
lookup()
update()

firstword()
nextword()

For each of these models:

 a. Define the storage
 b. Write functions to:

In doing this, we:
 a. Learn about malloc(),
 realloc(), and free()
 b. Use pointers some more

An array of char arrays (2D array) and an array of int1.

Defining the data structures:
 char word[MAXROWS] [WLEN+1];
 int value[MAXROWS];
 int n_rows; // how many rows are occupied
 int currrent_row; // used for iterating through table

Examine Code: Discuss Algorithms for functions

Pros and Cons of this solution
make a todo list for improvements

Note: static variables are local to file shared by all methods
Note: #include "wl.h" share declarations and #defines

2 . Allocate Custom- Length Strings using malloc()

Examine Code: Discuss Algorithms for functions

Pros and Cons of this solution

Q: How can we allocate memory when we know how
 long the string is? At runtime?
A: Ask the operating system by using malloc()
 see next page for details --->
 Note: malloc returns NULL on out- of- memory
 Note: need to call free(addr) to reycle memory

Defining the data structures:
 char *word[MAXROWS]; // array of pointers to chars
 // storage allocated at runtime
 int value[MAXROWS]; // array of values
 int n_rows; // how many rows are occupied
 int currrent_row; // used for iterating through table

created with mallocstatic definition

look at mallocdemo.c

malloc: Asking for memory when the program is running

Local Storage vs Dynamic Storage

Local Variables: created when a function starts and
deallocated when function returns. These are stored on
'the stack' - a region of memory

Dynamic Variables: created when requested with
malloc(storage_in_chars) and deallocated when program
calls free(). These are stored in 'the heap'
a different region of memory

malloc(amt) I need a new variable now !
 args: size of requested block: in chars
 rets: address of a block that size
 or NULL for no more memory available
 ex: p = malloc(100); // create block of 100 chars
 p[0] = 'a'; p[1] = 'b'; // p points to that block
 note: need to call free(addr) to recycle memory

see diagram below this page.

code: malloc1.c, mallocdemo.c

malloc() to store strings
 p = malloc(strlen(s) + 1); // allocate space
 strcpy(p, s); // copy str to new mem

<-- back to version 2

Allocating Memory when Program Runs

Allocate an array of chars:
 char *newarr = malloc(100);
 strcpy(newarr, "a string in dyn. mem.");

Allocate an array of ints:
 int *listp;
 listp = malloc(20 * sizeof(int));
 lisp[0] = 10; listp[1] = 20; ...

Allocate a struct:
 struct tstop *p;
 p = malloc(sizeof(struct tstop));
 p->dir = 'i';

3 . One fixed- size array of structs

Examine Code: Discuss Algorithms for functions

Pros and Cons of this solution

Defining the data structures:
 struct entry table[MAXROWS];
 int n_rows; // how many rows are occupied
 int currrent_row; // used for iterating through table

4 . realloc() Growing an Array when you need more space

Problem: A fixed size array can fill up
Solution: an expanding array:
 1 . use malloc to create an array
 2 . if array fills up, use realloc to expand array

Defining the data structures:
 struct entry *table;
 int capacity; // capacity of array currently
 int n_rows; // how many rows are occupied
 int currrent_row; // used for iterating through table

Examine Code: Discuss Algorithms for functions

Pros and Cons of this solution

Algorithm for Growable Array

4

5 . A Linked List

Problem: realloc() may have to move the array
Solution: Create each entry as needed, insert in list
 1 . use malloc to create each entry
 2 . move pointers to insert entry in list

Defining the data structures:
 struct link { char *word; int value; struct link *next; };
struct link head;
struct link *current_link;

Examine Code: Discuss Algorithms for functions

Pros and Cons of this solution

linkp

Inserting a link at front of a linked list

To add a link to the front of a iinked list"
 1 . make new link point to current first link
 2 . make head link point to the new link

Linked lists are often drawn horizontally:

Procedure for Inserting a New Item

Make and populate new Link

Insert new Link at Front

Common Use of Pointers: Processing Strings

char m[8] = "hello";
char n[6] = "bye";
strcpy(m, n);

You have to copy the string, char by char.
Use a loop with indexing m[i] = n[i] until n[i] == \0
or
Use a loop with pointers *p = *q until *q == \0

