class 6: Complex Data Structures +
Dynamically Allocated Memory

News:

hw3 due Sun at 1159pm
Section - Brandon

-- helps with homework

-- please attend and bring questions
Off Hrs Sat(3-4:30) and Sun(2-5) Bruce

hw4 out on Sun or Mon with 2 weeks to do it.

Warmup Question: What is wrong?

int main(void)

{
char *array[SIZE];
char input[SIZE]; /* a string for input */
int counter = 0;
char line[SIZE]; /* a string from input line */

while (fgets(input, SIZE, stdin) = NULL) {
sscanf(input, "%s", line);
array[counter] = line;
counter++;

}

for (inti=0; i < counter; i++){
printf("%s\n", array[il);

}

return O;

array an array of pointers, each holds an address

640
input line
o fefhfifs[fifs[Ja [1[[[[t[n]i]s]

866 880

Class 6: Dynamic Memory Allocation and Management

Today's Project: Frequency Tables
Today's Data Structure: a Dictionary
Today's Ideas: dynamic memory allocation
Today's Functions: malloc, realloc, free

recall the big picture:

. Forrn: an html page with user input items
anM Request a message sent over the Internet

Action: & program the server runs, This
program receives user input values

Response:an html page sent back to user

copyright (c) 2023 Bruce Molay

More Scripts and Web Interfaces: train-freq

Google shows how busy a store is by hour. Can we do the
same thing for number of trains stopping at a station?

Question: How many trains stop at a station for each hour
of the day? (Similar to busiest-time problem on hwO.)

Each entry in the sched file has a time as HH:MM, so we
can extract the HH part and count how may times each
hour appears.

a) Select the entries for a given station, dir, day

b) Cut out the hour portion of the time

¢) Count the number of instances of each hour
(frequency)

Three parts: form, connector, tool:

train-freq.html: get user request
train-freq1.cgi: extract request, call train-freq
train-freq: select rows, count hours

Version 2: use tt2ht for table output

A Common Problem: Frequency Tables

Computers are often used to compute frequency tables:

trains by hour

baby names by decade
census: people by state
site hits per day

words/letters/trigrams in a document

The AgsrRéctios

A .3
sty ig] funter
[bearl o

author identification, cryptography, language ident.
melodic/harmonic patterns: composer ident

The Abstract Model:

input: a list of items: words, trigrams. names, chord changes
output: a list of items with counts

words -> |

store and count

| -> freq table

One Solution: sort | uniq -c

wf

words -> |

#!/bin/sh
sort | uniq -c

| -> freq table

But: we only use sort because uniq -c only requires it.
Q: Can we count without sorting? It might be faster.

Another Solution: A dictionary

Storage System: Dictionary: string, count pairs

We need to store items and
corresponding counts.

We need a storage system
and operations for

that system.

init_table()
in_table()
insert()
lookup()
update()
firstword()
nextword()

Another Solution: We Write Our Own wordfreq Program

Main Logic:

// count freqs
while(get_next_word)
if (word is in table)
add 1 to count for word
else
add to table, count =1

words |:>

The ApsTRACTION
Ky
Sh'\ng/) 5] (umber

// report freqs
go to start of table
while(is another word)
print word, its count

a dictionary

-> freq table

Storage System: Dictionary: string, count pairs

We need to store items and
corresponding counts.

We need a storage system
and operations for

that system.

init_table()
in_table()
insert()
lookup()
update()
firstword()
nextword()

Program Structure: main file and helper file

One Program Composed of Two Source Files

wilmain.c

main loop:
— read and count
report:
display freq table
wifilerM.c l I

functions and

this

4
data structures to .:.-t.c-h:-or?
store words and counts: et 2
(a dictionary,

hashmap...)

To Compile a Multi-file Program:
cc -Wall -Wextra wimain.c wifiler1.c -o wf1

Simply list all the source files on the command line.

Five Implementations of a table of words and counts:

4. 2, 6ReAs word véue

A"““ = % @ For each of these models:

i o a. Define the storage
Illllll H b. Write functions to:
Z T“’O_J word value. init_table()
: MS N @’ E in_table()
nom\(:&\q : m insert()
skv\v\ s : looku
e Chmm O PO
Aok update()
3. Qe Aeeny fable firstword()
* An armay of o = M
structs . s 1 nextword()
Each stooet
o Char¥ and of ;%*‘ZZM
an it 3
In doing this, we:
| a. Learn about malloc(),
4 A%@MS tebe realloc(), and free()
5 bt i o A b. Use pointers some more
(eige acay as = A
Necdea. A RARAA
5 L wead
Al shuets ond

are
d_ﬁc«n\ cdlly VA
allocaked

1. An array of char arrays (2D array) and an array of int
A. 2. ARRA(S worrd value
- Aoy of © L-%x

]

stnngs |

2,
- Acray of 'L ‘
ints ; :

(T

Defining the data structures:
char word[MAXROWS][WLEN+1];
int value[MAXROWST];
int n_rows; // how many rows are occupied
int currrent_row; // used for iterating through table

Note: static variables are local to file shared by all methods
Note: #include "wl.h" share declarations and #defines

Examine Code: Discuss Algorithms for functions

Pros and Cons of this solution
make a todo list for improvements

2 . Allocate Custom-Length Strings using malloc()

2. 'gﬁg_“\gs word value.
o Atray
t&x (fb E
) i) g%m
a d(;bm&ed : :
s \r\gs) i
- Avay of L::I;W Cl

1t

static definition ~ created with malloc

Q: How can we allocate memory when we know how
long the string is? At runtime?

A: Ask the operating system by using malloc()
see next page for details --->
Note: malloc returns NULL on out-of-memory
Note: need to call free(addr) to reycle memory

look at mallocdemo.c

Defining the data structures:
char *word[MAXROWS]; // array of pointers to chars
// storage allocated at runtime
int value[MAXROWS]; // array of values
int n_rows; /' how many rows are occupied
int currrent_row; // used for iterating through table

Examine Code: Discuss Algorithms for functions

Pros and Cons of this solution

malloc: Asking for memory when the program is running

Local Storage vs Dynamic Storage

Local Variables: created when a function starts and
deallocated when function returns. These are stored on
'the stack' - a region of memory

Dynamic Variables: created when requested with
malloc(storage_in_chars) and deallocated when program
calls free(). These are stored in 'the heap'

a different region of memory

malloc(amt) | need a new variable now !
args: size of requested block: in chars
rets: address of a block that size
or NULL for no more memory available
ex: p =malloc(100); // create block of 100 chars
p[0]="a’; p[11="b'; // p points to that block
note: need to call free(addr) to recycle memory

see diagram below this page.
code: malloc1.c, mallocdemo.c
malloc() to store strings
p = malloc(strlen(s) + 1); // allocate space

strepy(p, S); // copy str to new mem

<-- back to version 2

Allocating Memory when Program Runs

Allocate an array of chars:
char *newarr = malloc(100);
strcpy(newarr, "a string in dyn. mem.");

Allocate an array of ints:
int *listp;
listp = malloc(20 * sizeof(int));
lisp[0] = 10; listp[1] = 20; ...

Allocate a struct:
struct tstop *p;
p = malloc(sizeof(struct tstop));
p->dir ="i';

3. One fixed-size array of structs

3. One Areay tahle
* An away of o “*M
gach shroet has !

o char ond 2 WARAZA
ah it :
Defining the data structures:

struct entry table[MAXROWS];
int n_rows; // how many rows are occupied
int currrent_row; // used for iterating through table

Examine Code: Discuss Algorithms for functions

Pros and Cons of this solution

4 . realloc() Growing an Array when you need more space

4. An Epapne tEbe
Aeeh

e tedlee. Ao

(e3wg aray as
ﬂee%\Qd.

Problem: A fixed size array can fill up
Solution: an expanding array:
1. use malloc to create an array
2 . if array fills up, use realloc to expand array

Defining the data structures:
struct entry *table;

int capacity; // capacity of array currently
int n_rows; // how many rows are occupied
int currrent_row; // used for iterating through table

Examine Code: Discuss Algorithms for functions

Pros and Cons of this solution

Algorithm for Growable Array

MAXIMUM
0CCUPANCY
’IPERSONS

Add entrles to array
table Capacity

| o o ATy |a '

“n_rows = 2=

When occcupied == capacity:
tahle “~——capacity = 4——

o {111 [£ 14]

;I'I_I'H-HS =4

Then realloc memory and update capacity

table = rapacity =
| ot to Ay —)I} i -I\ t
;n_mws =4 =

Then continue ad-l:ling to expanded array.

table “——gapacity = fi
| ot o army i

(A [lR] |

;n_mws = j———

5.A Linked List
5. 00 b Lt oo
Al stuets and
s are
?d::(tﬁ\cdlg
allocaked

linkp

REmSHEEE]

Problem: realloc() may have to move the array
Solution: Create each entry as needed, insert in list
1. use malloc to create each entry
2 . move pointers to insert entry in list

Defining the data structures:

struct link { char *word; int value; struct link *next; };
struct link head;

struct link *current_link;

Examine Code: Discuss Algorithms for functions

Pros and Cons of this solution

Inserting a link at front of a linked list

To add a link to the front of a iinked list"
1. make new link point to current first link
2 . make head link point to the new link

head
newlink
E
= anc
—\-|_. "defg" |
NULL
Linked lists are often drawn horizontally:
head I—IHABC" | I—I"defg"
|
/ NULL
newlink
— o

Procedure for Inserting a New Item

Start: List with two links

head

440

440

4

476

MNULL

Goal: add "xy" to list

ny

Make and populate new Link

Allocate new string array
newstr 5432

:I |:|:|:| str
SM n "
xy

Copy str to allocated array
mewstr 543

Allocate new struct
newlink 576
l 576 | o

jstrcp;_.r
&

Store array peinter in struct
newlink 576 5

42
576 —|—> 542 ——;-|x|y|'m|

Store value in struct
newlink 576 5

42
6 ——= s ———{x[y|w]

Insert new Link at Front

Start: A list and a new link

ﬂ_A " m m
head 480 476
I [
440 / 476 NULL

newlink 576 542

376 —’—) 512 ——Ax|y|\0|

Point new link to first in list

N = A i
7 I !

40 476 WULL

newlink 576 543
576

576 276 NULL
newlink ;575 542
576 512 —ﬁ = | v I \¢|
1
H 240

Redraw with current connections

hea o el

576 240 476 NULL

newlink

576

Common Use of Pointers: Processing Strings

char m[8] = "hello";
char n[6] = "bye";
strcpy(m, n);

\II||I[|II|ﬁ\el‘\llol\ﬂlIIIIIﬁ;IvIE\\O\\II'

*p:*q

You have to copy the string, char by char.
Use a loop with indexing mli] = n[i] until n[i] ==\0
or

Use a loop with pointers *p = *q until *q ==\0

