Using Strings and Pointersin C
static, local, and dynamic memory

21 March 2010

1. A Common malloc/free Error in C Programming

In our grading of assignments, wevhaeen a fev malloc/free errors appeargelarly. These errors often
involve working with strings of charactershis document starts by discussing a common ,eanok then
explains, in more general terms, strings and memory in C.

Consider the following code fragment:

voi d setlnvalidArg(char *arg)

{
invalidArg = mal | oc(sizeof (arg));
strcpy(invalidArg, arg);

This function is hoping to store a string in a global variable caliechl i dAr g and uses malloc to get
enough space to store the sequence of ciidrs.problem is that thei zeof operator tells the amount of
space used by its gument. Inthe code fragment shown, the argument is a pointer to a charécter
pointer is a variable that holds the address of data. On a 32-bit prodieisseariable is usually four bytes
long (32 bits), and on a 64-bit procesgsbe variable may be eight bytes long (64 bits). In neither case
does thesi zeof operator find the number of chars stored in the place pointed to by arg.

The correct way to use a char pointer to get the amount of space needed to store a string is to use the C
library functionstr | en as in
invalidArg = malloc(1 + strlen(arg));
if (invalidArg == NULL)
report_error_and_exit(...)

The functionst r | en goes to the memory pointed to by acounts the number of chars before the nul char
and returns that counou haveto add 1 to that number because the ggace you get has toveeough
elements for the chars and for the terminating nul char.

Notice also that the corrected version checks the retaire irom malloc before using that addreffs.
malloc fails, it returns a NULL pointerAn atempt to cog a dring into the space pointed to by a NULL
pointer will generate a segmentation violation and crash the program.

2. Storing Stringsin C

You are writing a C program that needs to store some stringstof Wéhatare your options™How do you
decide which technique to use?

In C, a string is a sequence of chars stored in congegutimory locations and terminated witimal char-

acter -- a char with numeric code of zefochar in C is just a numbghe numeric code for that character
Therefore a string is a sequence of memory locations holding numeric codes for chars terminated with a
memory location holding the value 0, also written as "0’ .

3. Typesof Storagefor Strings

C wpports three types of storage: global, local, and dynamic. There are no other choices, so understanding
the options is not too complicated.

global A global string is an array of chars that persists for the duration of progention and is
awailable to all functions that appear belthe variable definition or declaratiotdere is an
example;

int funcl(){

page 1

local

dynamic

C drings/ptrs

.

char nane[100] = "Il nogene"; /* created when program | oads into nmenory */
int func2(){

}

int func3(){
}...

In the example shown ab® functions func2 and func3 can use the array called name, b
funcl does not krwp about it. In practice, one rarely mixes definitions of global variables with
function definitions. Usually the variables are defined first.

A local string is an array of chars that persists within a function until the functitm &
local string is =ailable to the function in which it is definedzurthermore, the function in
which the string lfes can pass the address of that string to other functions it dallsthe
space for the local string is deallocated automatically when the functitn élereis an
example:

voi d funcl()
char name[100] ; /* created when function is called */

strcpy(nane, "Smith");
strcat(name, ", John Q");
printf("The name is %\n", nane);

}

In this example, the string called name is defined within the function. The 100-chars of space
is allocated when the function startseguting and is deallocated when the functiagitse In

each line of the function the string is passed, by reference, to other functions:ssttap and

printf. Thesethree functions rece¢ the address in memory of the arraBy receving the
address, these functions can modify the contents of the drthgy like. Thefirst two func-

tions, strcy and strcat, do modify the arrawhile the third function, printf, does not modify

the string.

Here is another example:

void greet(int n)

char ans[n+1];

printf("Wat is your name? ");

fgets(ans, n+l, stdin);

printf("l am pleased to neet you, %!\n", ans);

}

This example shows that the size of a local array can be set when the function isTdaed.
feature of C combines the simplicity andi@éncgy of local variables with the flexibility of
dynamic memory The difference between dynamically sized local storage and malloc’ed stor
age is that local storage is automatically deallocated when the function exits.

Adynanic string is an array of chars allocated when needed by the programmer during the run-
ning of the program and deallocated by the programmer when the array is no longer needed.
To aeate the dynamically allocated string, the programmer writes:

char *make_name(char *first, char *last)
{
char *result;
/* get space for both names, and ", " and the nul at the end */

result = malloc(strlen(first) + strlen(last) + 2 + 1);
if (result == NULL)

page 2

C drings/ptrs

fatal ("out of nenory"); /* print nessage and exit */
sprintf(result, "%, %", last, first);
return result;

}

In this example, the function called make name is passedtiwgs. Thefunction then allo-
cates enough memory to hold thetmames with a comma and space between them. Then the
function writes the full name into thewespace and returns the address of this dynamically
created array.

A dynamic string differs from a global string because it comes into being when the program
calls the malloc() function and is deallocated when the program calls the free() fur@tion.

the other hand, a global string comes into being when the program starts and cesisés to e
when the program ends.

A dynamic string differs a local string in that a local string is allocated when the function is
called and is deallocated when the functiaitse A dynamic string does not depend on the
program starting or a function starting to appead it does not depend on a prograxitieg

or a program returning toamish. Insteada dynamic string appears when you ask for it with
malloc and vanishes when you call free.

4. When to Use Each Type of String

The three types of strings differ inladong each lies and haw visible each type is.

global

local

dynamic

Aglobal string les for the duration of the program and is visible ¥erg function in the file
in which the string is defined and care® be vsible to functions in other files if those other
files declare the string to legt ern .

Therefore, use global strings foryasequence of chars if that string meets these needs:

1. You want the storage to be around for the whole program
2. You want to refer to that storage by name frojmfanction
3. When you knw in advance hw much space you will need

Global variables are usually a bad id€ather functions can modify the contentanother
programmer could add a function to the program that changes the array in waysistng e
code does not expect.

But some global ariables are useful and good design. In particalatic global variables are
local to a file and are a goocawto store state for a module. If a file implements a particular
type of object, that file may defire ati ¢ char n[LEN]; to male an aray that is visible
only to functions in that file.

Alocal string appears when the function starts and vanishes when the furitSoruselocal
strings when:

1. You need space for scratch work inside a function
2. You do not need the storage after the function is done
3. You do not knav how much space you need until the function is called

The contents of the string will not exist after the function exits, so only use local strings for
storage needed by the functioAs the example alve dows, you can use a local string to
malke a opy of a gring or to combine a fe strings into one longer string, pass that longer
string to another function, and once done with the scratch space, just exit the function and the
compiler arranges for that space to be deallocated.

Adynamic string is allocated (instantiated) when you use malloc() to create the string, and the
string is deallocated when you call free(). There aerain values to dynamic string&Jse
dynamic strings when:

page 3

C grings/ptrs

1. You need to store a string for an unknown length of time
2. You do not knav how much memory you need until the program is running

For example, if you are writing a program to read in a list ofdg, sort the list, and then print
out the list, you do not knoin advance hw mary words a user might type in, nor do you
know how long those words will be. Furthermore, you may write one function to read in the
data and another function to sort the list, and a third function to print out the réstiltss
case, the storage has to be around after the first function is done reading in the data.

page 4

