
Using Strings and Pointers in C
static, local, and dynamic memory

21 March 2010

1. A Common malloc/free Error in C Programming

In our grading of assignments, we have seen a few malloc/free errors appear regularly. These errors often
involve working with strings of characters.This document starts by discussing a common error, and then
explains, in more general terms, strings and memory in C.

Consider the following code fragment:

void setInvalidArg(char *arg)
{

invalidArg = malloc(sizeof(arg));
strcpy(invalidArg, arg);

}

This function is hoping to store a string in a global variable calledinvalidArg and uses malloc to get
enough space to store the sequence of chars.The problem is that thesizeof operator tells the amount of
space used by its argument. Inthe code fragment shown, the argument is a pointer to a character. A
pointer is a variable that holds the address of data. On a 32-bit processor, this variable is usually four bytes
long (32 bits), and on a 64-bit processor, the variable may be eight bytes long (64 bits). In neither case
does thesizeof operator find the number of chars stored in the place pointed to by arg.

The correct way to use a char pointer to get the amount of space needed to store a string is to use the C
library functionstrlen as in

invalidArg = malloc(1 + strlen(arg));
if ( invalidArg == NULL )

report_error_and_exit(...)

The functionstrlen goes to the memory pointed to by arg, counts the number of chars before the nul char
and returns that count.You hav eto add 1 to that number because the new space you get has to have enough
elements for the chars and for the terminating nul char.

Notice also that the corrected version checks the return value from malloc before using that address.If
malloc fails, it returns a NULL pointer. An attempt to copy a string into the space pointed to by a NULL
pointer will generate a segmentation violation and crash the program.

2. Storing Strings in C

You are writing a C program that needs to store some strings of text. Whatare your options?How do you
decide which technique to use?

In C, a string is a sequence of chars stored in consecutive memory locations and terminated with anul char-
acter -- a char with numeric code of zero.A char in C is just a number, the numeric code for that character.
Therefore a string is a sequence of memory locations holding numeric codes for chars terminated with a
memory location holding the value 0, also written as ’\0’ .

3. Types of Storage for Strings

C supports three types of storage: global, local, and dynamic. There are no other choices, so understanding
the options is not too complicated.

global A global string is an array of chars that persists for the duration of program execution and is
available to all functions that appear below the variable definition or declaration.Here is an
example;

int func1(){

page 1



C strings/ptrs

...
}

char name[100] = "Imogene"; /* created when program loads into memory */

int func2(){
...

}

int func3(){
...

}

In the example shown above, functions func2 and func3 can use the array called name, but
func1 does not know about it. In practice, one rarely mixes definitions of global variables with
function definitions. Usually the variables are defined first.

local A local string is an array of chars that persists within a function until the function exits. A
local string is available to the function in which it is defined.Furthermore, the function in
which the string lives can pass the address of that string to other functions it calls.But the
space for the local string is deallocated automatically when the function exits. Hereis an
example:

void func1()
{

char name[100]; /* created when function is called */

strcpy(name, "Smith");
strcat(name, ", John Q.");
printf("The name is %s\n", name);

}

In this example, the string called name is defined within the function. The 100-chars of space
is allocated when the function starts executing and is deallocated when the function exits. In
each line of the function the string is passed, by reference, to other functions: strcpy, strcat, and
printf. Thesethree functions receive the address in memory of the array. By receiving the
address, these functions can modify the contents of the array, if they like. Thefirst two func-
tions, strcpy and strcat, do modify the array, while the third function, printf, does not modify
the string.

Here is another example:

void greet(int n)
{

char ans[n+1];
printf("What is your name? ");
fgets(ans, n+1, stdin);
printf("I am pleased to meet you, %s!\n", ans);

}

This example shows that the size of a local array can be set when the function is called.This
feature of C combines the simplicity and efficiency of local variables with the flexibility of
dynamic memory. The difference between dynamically sized local storage and malloc’ed stor-
age is that local storage is automatically deallocated when the function exits.

dynamic Adynanic string is an array of chars allocated when needed by the programmer during the run-
ning of the program and deallocated by the programmer when the array is no longer needed.
To create the dynamically allocated string, the programmer writes:

char *make_name(char *first, char *last)
{

char *result;

/* get space for both names, and ", " and the nul at the end */

result = malloc( strlen(first) + strlen(last) + 2 + 1 );
if ( result == NULL )

page 2



C strings/ptrs

fatal("out of memory"); /* print message and exit */
sprintf(result, "%s, %s", last, first);
return result;

}

In this example, the function called make_name is passed two strings. Thefunction then allo-
cates enough memory to hold the two names with a comma and space between them. Then the
function writes the full name into the new space and returns the address of this dynamically
created array.

A dynamic string differs from a global string because it comes into being when the program
calls the malloc() function and is deallocated when the program calls the free() function.On
the other hand, a global string comes into being when the program starts and ceases to exist
when the program ends.

A dynamic string differs a local string in that a local string is allocated when the function is
called and is deallocated when the function exits. A dynamic string does not depend on the
program starting or a function starting to appear, and it does not depend on a program exiting
or a program returning to vanish. Instead,a dynamic string appears when you ask for it with
malloc and vanishes when you call free.

4. When to Use Each Type of String

The three types of strings differ in how long each lives and how visible each type is.

global A global string lives for the duration of the program and is visible to every function in the file
in which the string is defined and can even be visible to functions in other files if those other
files declare the string to beextern .

Therefore, use global strings for any sequence of chars if that string meets these needs:

1. You want the storage to be around for the whole program
2. You want to refer to that storage by name from any function
3. When you know in advance how much space you will need

Global variables are usually a bad idea.Other functions can modify the contents.Another
programmer could add a function to the program that changes the array in ways your existing
code does not expect.

But some global variables are useful and good design. In particular, static global variables are
local to a file and are a good way to store state for a module. If a file implements a particular
type of object, that file may definestatic char n[LEN]; to make an array that is visible
only to functions in that file.

local A local string appears when the function starts and vanishes when the function exits. Uselocal
strings when:

1. You need space for scratch work inside a function
2. You do not need the storage after the function is done
3. You do not know how much space you need until the function is called

The contents of the string will not exist after the function exits, so only use local strings for
storage needed by the function.As the example above shows, you can use a local string to
make a copy of a string or to combine a few strings into one longer string, pass that longer
string to another function, and once done with the scratch space, just exit the function and the
compiler arranges for that space to be deallocated.

dynamic Adynamic string is allocated (instantiated) when you use malloc() to create the string, and the
string is deallocated when you call free(). There are two main values to dynamic strings.Use
dynamic strings when:

page 3



C strings/ptrs

1. You need to store a string for an unknown length of time
2. You do not know how much memory you need until the program is running

For example, if you are writing a program to read in a list of words, sort the list, and then print
out the list, you do not know in advance how many words a user might type in, nor do you
know how long those words will be. Furthermore, you may write one function to read in the
data and another function to sort the list, and a third function to print out the results.In this
case, the storage has to be around after the first function is done reading in the data.

page 4


