000 page000.html

page001.html

Directory Trees and Disks

001

4) Focus on FileSystems The story so far

files have content AND properties

csci-e28 slides Class 04 page 2

page002.html

002

Tonight: focus on file systems

What users see: one big tree of dirs and files

The tree contains files, file info, and directories

<u>The reality:</u> one or more stacks of magnetic disks or memory chips.

How can multiple stacks of disks be made to look like a single tree of directories and files?

- What is the internal structure of a 'file system'?
- How do multiple disks merge into one tree?

project: write pwd

page003.html perror and errno 003

2) But first, a brief interruption to discuss error handling

errno error code perror(char *)
prints a message

strerror(errno)
returns a string

Fact: system calls return -1 on error But: what *is* the specific error? example: open() can fail for many reasons

- Q: How can the program determine which error it is?
- A: The kernel sets a global value, known as errno, to a code in /usr/include/errno.h
- Q2: How can a program tell the user what is the cause of the error?

A2: perror(str) prints "str: description"

Q3: What to do? A: it depends

perror_demo.c

csci-e28 slides Class 04 page 3

page004.html

User View of Directories

004

3) User view and Commands for file system

first, let's become familiar with the major fs-related commands by building a demo directory tree

005 page005.html

4) Almost no limits to tree structure

- · directories can contain lots of files
- · directory depths can exceed the capacity of most fs commands

page006.html

Structure of a File System

006

6) A disk is a stack of magnetic platters, disks, tracks, sectors, viewable as a sequence of DISK BLOCKS

 ${\cal A}$ 'disk' can also be a USB flash drive, the storage on a telephone, or storage device that consists of a sequence of blocks.

page007.html **007**

7) How can a numbered sequence of blocks store files, file info, and directories?

Ans: divide the disk into three regions, structure them sp:

page008.html

Block Allocation Lists

800

8) Using this model to understand creating a file: e.g. who > userlist

say the file requires three diskblocks of storage...

page009.html

Details of Allocation Lists

009

Details of recording disk allocation

fact, a large file is stored in many blocks

page010.html

010

9) Using this model to revisit demodir

now that we know the internal structure of dirs, we can see what is *really* going on in our demo dir structure

page011.html Multiple disks, one tree 011

Question2: How can many disks form one tree?

Ans: Each disk contains a tree structure. That tree can be `mounted' on another tree at any directory.

stat() info includes the inode *and* the device. That pair uniquely identifies the file.

Each file on a disk has an inode number.

Each disk has a device TD.

The `mount' command reports what disks are attached to the tree at what directories. The directories are called `mount-points'.

page012.html **012**

10) The System Calls for standard file ops

command	syscall	action
rm	unlink()	removes a link if links== 0, deallocate
rmdir	rmdir()	delinks a directory
ln	link()	creates a new link
ww	link() then unlink() now rename()	
mkdir	mkdir()	creates new directory

page013.html Writing pwd 013

11) writing pwd

pwd prints the path to the current directory. But, the current directory only knows itself as "." How can its location in the tree be determined?

d1
d2

xlink

хсору_

page014.html

Multiple Names for Same File

014

One file: two dir entries (i.e. two links)

inode table

You can use either name. chmod o+x file1, chmod u-r greet

data region

 \mathcal{Q} : What if you rm file 1? What happens to greet? \mathcal{A} :

Note: In a city, each street has its own list of house numbers Each file system has its own inode table (inums

But: A hard link can<u>not</u> refer to an inode on a different file system. 123 Main St vs 123 Maple St

page015.html **015**

Symbolic Links: Another Way for Different Names, Same File

There are two files : the symlink is a file that contains the name of its referent

You can use either name: cat file1, cat file2

Q: What if you rm file1? What happens to file2? A:

But: A symlink can contain the name of a file/dir on a different filesystem.

page016.html **016**

page017.html **017**

page018.html **018**

page019.html **019**

page020.html **020**

page021.html **021**

page022.html **022**

