page000.html

page001.html

Directory Trees and Disks

001

4) Focus on FileSystems

The story so far

page002.html **002**

Tonight: focus on file systems

What users see: one big tree of dirs and files

The tree contains files, file info, and directories

<u>The reality:</u> one or more stacks of magnetic disks or memory chips.

How can multiple stacks of disks be made to look like a single tree of directories and files?

- What is the internal structure of a `file system'?
- How do multiple disks merge into one tree?

project: write pwd

page003.html perror and errno 003

page004.html User View of Directories 004

3) User view and Commands for file system

first, let's become familiar with the major fs-related commands by building a demodirectory tree

page005.html **005**

4) Almost no limits to tree structure

- directories can contain lots of files
- directory depths can exceed the capacity of most fs commands

page006.html

Structure of a File System

006

a telephone, or storage device that consists of a sequence

page007.html **007**

7) How can a numbered sequence of blocks store files, file info, and directories?

Ans: divide the disk into three regions, structure them sp:

page008.html Block Allocation Lists 008

8) Using this model to understand creating a file: e.g. who > userlist

say the file requires three diskblocks of storage.

page009.html

Details of Allocation Lists

009

page010.html **010**

9) Using this model to revisit demodir

now that we know the internal structure of dirs; we can see what is *really* going on in our demo dir structure

page011.html

Question2: How can many disks form one tree?

Multiple disks, one tree

Ans: Each disk contains a tree structure. That tree can be `mounted' on another tree at any directory.

stat() info includes the inode *and* the device. That pair uniquely identifies the file.

Each file on a disk has an inode number.

Each disk has a device TD.

The `mount' command reports what disks are attached to the tree at what directories. The directories are called `mount-points'.

011

012 page012.html

10) The System Calls for standard file ops

command	syscall	action
rm	unlink()	removes a link if links == 0, deallocate
rmdir	rmdir()	delinks a directory
ln	link()	creates a new link
mv	link() then unlink() now rename()	
mkdir	mkdir()	creates new directory

013 page013.html Writing pwd

11) writing pwd

pwd prints the path to the current directory. But, the current directory only knows itself as "." How can its location in the tree be determined?

page014.html

Multiple Names for Same File

014

page015.html **015**

page016.html **016**

page017.html **017**

page018.html **018**

page019.html **019**

page020.html **020**

page021.html **021**

page022.html **022**

