
CSCI-E28 Course Information

Instructor

Bruce Molay (molay@fas.harvard.edu), (617)864-8832.

Purpose/Content

Csci-e28 explains the structure of the Unix operating system and shows how to write system and network

programs. It is appropriate for students who want to learn how to write system software for Unix or for stu-

dents who want to learn about the structure of a multi-tasking, multi-user operating system. The course

covers the details of the file system, terminal and device input/output, multi-tasking, interprocess commu-

nication, video displays, and network programming. Theory is presented in the context of how Unix imple-

ments the ideas. By the end of the course, students should be able to figure out how most Unix commands

work and know enough about the system to draft their own version of most of them.

Preparation

You should be able to program in C or C++. You should be comfortable with pointers, structs, dynamic

memory allocation, linked lists, and recursion. You do not need to have programmed in C for Unix. If you

know C++, you need to write in the C subset of C++. Students are already expected to be comfortable with

designing, coding, and debugging programs of modest complexity while employing good programming

style, structured techniques, and employing appropriate data structures as appropriate. Familiarity with

Unix is helpful but not essential.

Classes

Classes are Wednesdays, 7:40-9:40PM ET online using Zoom. Lectures present ideas in the context of spe-

cific problems and Unix commands. Careful review of sample programs will be used to demonstrate prin-

ciples and focus discussion. Many of the programs will be from the text; read before lecture, bring ques-

tions.

Reading

Understanding Unix/Linux Programming by Molay is the main text This book follows the course closely.

Tw o other texts are not required, but are helpful additions: Advanced Programming in the Unix Environ-

ment by Stevens is more encyclopaedic - has all the info and is an excellent reference. Linux Application

Development by Johnson and Troan provides supplemental information about programming for Linux.

Required Work

A final exam and six programming assignments. The assignments are spaced evenly through the term.

Most assignments build on or follow examples and ideas presented in class. Grades are based on a final

exam and the programming projects. The weighting is roughly 35% exam, 61% for projects, 4% for class

participation. For details on assignments, see the Assignments page on the course web site

(cscie28.dce.harvard.edu/˜dce-lib215).

Final Exam

The final exam is taken at home, proctored with Zoom or proctoring software.

Course System, VPN

The course machine is cscie28.dce.harvard.edu. Connect using ssh over the Harvard VPN. Detailed

instructions for the VPN can be found here: https://harvard.service-now.com/ithelp?id=kb_arti-

cle&sys_id=f1766696db1e94184415 60fdd39619ef

Accounts

Your username on the E28 server is your Harvard NetID. You need a Harvard Key to get a NetID. Claim

your Harvard Key at https://key.harvard.edu/ . For details about claiming your key,

visit: https://extension.harvard.edu/for-students/support-and-services/computer-and-e-mail-services/

You can find your NetID at https://key.harvard.edu/manage-account. Accounts will be available one week

before classes start.

Help Review Sections Online meeting one hour each week at a time to be determined.

Office Hours Online with Zoom, times to be arranged

Ed Use Ed discussion on Canvas to send questions to staff and to

start and participate in class discussions.

web page http://cscie28.dce.harvard.edu/˜dce-lib215/

Info Sheets/Scheduling

Please go to http://cscie28.dce.harvard.edu/˜dce-lib215/infoform to tell us your preferences for section

and office hours time. Do this now.

Accessibility

The Extension School is committed to providing an accessible academic community. The Accessibility

Office offers a variety of accommodations and services to students with documented disabilities. Please

visit www.extension.harvard.edu/resources-policies/resources/disability-services-accessibility for more

information.

Academic Integrity/Plagiarism

You are responsible for understanding Harvard Extension School policies on academic integrity

(www.extension.harvard.edu/resources-policies/student-conduct/academic-integrity) and how to use

sources responsibly. Not knowing the rules, misunderstanding the rules, running out of time, submitting

the wrong draft, or being overwhelmed with multiple demands are not acceptable excuses. There are no

excuses for failure to uphold academic integrity. To support your learning about academic citation rules,

please visit the Harvard Extension School Tips to Avoid Plagiarism (www.extension.harvard.edu/resources-

policies/resources/tips-avoid-plagiarism) , where you’ll find links to the Harvard Guide to Using Sources

and two free online 15-minute tutorials to test your knowledge of academic citation policy. The tutorials are

anonymous open-learning tools.

Attendance/Participation

Students are encouraged to attend class during the live presentation and to participate by asking and

answering questions. People who cannot attend class may participate on the Ed discussion site.

Credit/Work

Students are assigned the same work whether they are enrolled for graduate or undergraduate credit.

Modified January 23, 2022 13:02

CSCI-E28 REVISED 5 Nov 2021 Spring 2022 Schedule

Section 1: Files

Jan 26

Topic: Introduction to Systems

Programming

Reading: Ch. 1

Assignment more03 Due Jan 30

Homework 0 Due Feb 2

Feb 2

Topic: Files, System Files, File

Formats, Buffered I/O

Reading: Ch. 2

Feb 9

Topic: Directories, File Info, Bits

Reading: Ch. 3

Homework 1 Due (Feb 13)

Feb 16

Topic: File Systems

Reading: Ch. 4

Section 2: Device I/O

Feb 23

Topic: Files, Devices, Drivers

Reading: Ch. 5 + 6

Homework 2 Due (Feb 27)

Section 3: Multi-Tasking

Mar 2

Topic: Writing a video game:

curses, timers, polling

Reading: Ch. 7

Mar 9

Topic: Processes: Writing a Shell:

fork, exec, wait

Reading: Ch. 8

Homework 3 pstty Due (Mar 13)

Mar 16 No Class: Spring Break

Mar 23

Topic: A Programmable Shell, The

Environment

Reading: Ch. 9

Homework 4 pong Due (Mar 27)

Section 4: Inter-Process

Communication

Mar 30

Topic: I/O Redirection and Pipes

Reading: Ch. 10

Apr 6

Topic: Network Programming:

Sockets, Servers, Clients

Reading: Ch. 11

Section 5: Network Programming

Apr 13

Topic: Network Programming: A

Web Server

Reading: Ch. 12

Homework 5 Due (Apr 17):

smallsh

Apr 20

Topic: Network Programming:

License Server

Reading: Ch. 13

Apr 27

Topic: Concurrent Programming

Reading: Ch. 14

Homework 6 Due (Sun May 1):

network project

May 4

Topic: Review

May 11

Final Exam

CSCI-E28 REQUIRED WORK / GRADING / STANDARDS

Projects, Final Exam, and Weights

There are six programming assignments and one writ-

ten, proctored final exam. The final exam is open

notes and open book, but you may not use any elec-

tronic devices during the exam. The six programming

assignments count for 61% of your grade, the final

exam counts for 35% of the grade, and class participa-

tion counts for 4% of the grade.

Your grade for the course should reflect what you

know and can do as the course ends. I think of your

grade as a very brief letter of recommendation to your

next instructor or a possible employer. Therefore, I

may adjust these fractions if your final exam shows

very significant improvement or very significant de-

cline relative to your assignments.

If the final exam shows significant improvement, that

might mean you struggled earlier in the term but fi-

nally figured it out near the end.

Similarly, if your work on the final exam is signifi-

cantly weaker than your work on programming as-

signments, that might mean you forgot most of what

you knew during the term or you did not internalize

enough of the ideas to draw on them during an exam.

In both cases, I shall put more weight on the final

exam so the course grade reflects more accurately

where you are at the end.

Program in C for Unix/Linux

All projects for this course are programming assign-

ments. You may write and test the code on any sys-

tem, but you must make sure your code is copied to,

compiles on, runs on, and is submitted from the

course server: cscie28.dce.harvard.edu . We expect

you to write in C, the language of Unix system pro-

gramming. Do not submit solutions in other lan-

guages.

What We Look For

Homework assignments are graded on a 100 point

scale. Those 100 points are divided into:

Correctness works correctly

Modularity file/function decomposition

Efficiency good use of resources

Clarity easy to follow

Documentation comments, Design Docs

Correctness counts for 70 points, the rest for 30

points. Producing a working program is the first step.

A working program, then, must be updated, fixed,

reused, and read by other people.

If your program works correctly but is poorly de-

signed, you get a C. See the section on Design and

Coding Standards for more detail.

Letter Grades

The Extension School website states the meaning of

letter grades at Harvard. Here are the posted stan-

dards for grades of A, B, and C:

A and A-

Earned by work whose superior quality indicates a

full mastery of the subject, and in the case of A,

work of extraordinary distinction. There is no

grade of A+

B+, B, and B-

Earned by work that indicates a strong compre-

hension of the course material, a good command

of the skills needed to work with the course mate-

rials, and the student’s full engagement with the

course requirements and activities.

C+, C, and C-

Earned by work that indicates an adequate and sat-

isfactory comprehension of the course material

and the skills needed to work with the course ma-

terials, and that indicates that the student has met

the basic requirements for completing assigned

work and participating in class activities.

I do not grade on a curve. Everyone can get an A, and

ev eryone can flunk. Your success has no effect on the

grade of your classmates.

Academic Integrity

The following language is from the DCE website:

Plagiar ism

Plagiarism is the theft of someone else’s ideas and

work. It is the incorporation of facts, ideas, or

specific language that are not common knowl-

edge, are taken from another source, and are not

properly cited.

Whether a student copies verbatim or simply re-

phrases the ideas of another without properly ac-

knowledging the source, the theft is the same. A

computer program written as part of the student’s

academic work is, like a paper, expected to be the

student’s original work and subject to the same

6 Nov 2021 page 1

Homework Standards

standards of representation. In the preparation of

work submitted to meet course, program, or

school requirements, whether a draft or a final

version of a paper, project, take-home exam, com-

puter program, placement exam, application es-

say, oral presentation, or other work, students

must take great care to distinguish their own ideas

and language from information derived from

sources. Sources include published and unpub-

lished primary and secondary materials, the Inter-

net, and information and opinions of other people.

Extension School students are responsible for fol-

lowing the standards of proper citation to avoid

plagiarism. A useful resource is The Harvard

Guide to Using Sources prepared by the Harvard

College Writing Program and the Extension

School’s tips to avoid plagiarism.

Inappropr iate Collaboration and Other Assist-

ance

Collaboration on assignments is prohibited unless

explicitly permitted by the instructor. When col-

laboration is permitted, students must acknowl-

edge all collaboration and its extent in all submit-

ted work. Collaboration includes the use of pro-

fessional or expert editing or writing services, as

well as statistical, coding, or other outside assist-

ance. Because it is assumed that work submitted

in a course is the student’s own unless otherwise

permitted, students should be very clear about

how they are working with others and what types

of assistance, if any, they are receiving. In cases

where assistance is approved, the student is ex-

pected to specify, upon submission of the assign-

ment, the type and extent of assistance that was

received and from whom. The goal of this over-

sight is to preserve the status of the work as the

student’s own intellectual product. Students

should remember that the Writing Center is avail-

able to assist them with assessing and editing

their own work.

The following language is for CSCI-E28:

The work you submit must be your own work.

You may base your work on samples from class

or examples from texts. We encourage students

to discuss ideas, problems, techniques.

Do not show other students your code. Do not

look at code written by other students.

Your homework should be all your own work or a

combination of your own work and your synthesis

and extension of examples. Please state the

sources of any piece of code you use, including

code from the textbook and class samples.

Submitting Homework

Homework is due by midnight on Saturday evenings.

There is a 10 point penalty for each day late you turn

in an assignment. You will submit code and text elec-

tronically. Please see the course website for an expla-

nation of submitting your work by computer.

Creating Sample Runs

For most projects we require a sample run of your

program. Use the script command to capture sample

runs of your program. Script records everything that

appears on the screen and saves it all to a file.

To make a script, type script. The computer will

print a message and print the shell prompt. Now run

your program. Type "exit" at the prompt when you

wish to stop recording. Unless you specify some

other name, script will save everything in a file called

"typescript", so include that file. A sample session is

shown below:

$ script
Script started, file is typescript
$ cat foo.c
. . .
$./a.out
. . .
$ exit
Script done, file is typescript

Late Days and Catastrophes

Your assignments will lose 10 points per day late. But

we know things take longer than planned, and we also

know that big problems come up.

If a project takes longer than you expect or if some-

thing serious happens, you do not have to ask for an

extension. You get four late days and one catastrophe

included for free. Here’s how it works.

Four Late Days

Across all the assignments, you can use four late days

without penalty. You can turn in one assignment four

days late, you can turn in four assignments each one

day late, or any combination.

Catastrophes

But sometimes your kid gets the flu or your job asks

ev eryone to work an extra twelve hours a day to meet

a deadline. In other words, some catastrophe. We al-

low one catastrophe per term. If you have one, you

must submit a good-faith effort for that project (which

means at least 60% or the requirements). We then

drop that grade. If you do not make a good faith

6 Nov 2021 page 2

Homework Standards

effort, we give you zero for that grade. The late days

are not used for the catastrophe.

The only exceptions to this policy are:

(a) We will not drop hw5

(b) You cannot be late for hw6

At the end of the term I compute all combinations of

late day deductions and catatrophes and use the com-

bination that produces the highest grade.

Design and Coding Standards

CSCI-E28 is a computer science course that counts to-

ward the degree in software engineering. We want to

help you learn and improve:

• Unix systems programming ideas and skills

• Computer science ideas

• Software engineering ideas and skills

Therefore we grade your work with an eye on each of

these three areas.

Unix/Linux Systems Programming

Unix systems programming ideas include ideas such

as file systems, processes, interprocess communica-

tions, concurrency. Unix Systems programming skills

include how to traverse a directory tree, how to create

a process, how to send messages between running

programs, and how to coordinate actions of multiple

processes. We will grade you on how well you under-

stand and use these ideas and skills.

Computer Science

Computer science is the field of solving problems by

developing and analyzing algorithms machines can

perform. The field includes knowing and using algo-

rithms and data structures effectively. We look for ef-

fective and efficient algorithms and data structures.

These standards apply at the large level such as decid-

ing on a recursive vs iterative solution and at the small

level like allocating a temporary string using malloc

vs using local a local variable. (Hint: malloc is an in-

efficient choice)

Design and Engineering

Please follow these five rules for writing clear, read-

able, maintainable code:

Rule 1: Modular and Layered

Rule 2: Short Functions: 30 lines x 80 cols max

Rule 3: Comments: File, Function, Paragraph

Rule 4: Spaces, Blank Lines, Indenting

Rule 5: Clear, Concise Names

Rule 1: Modular and Layered

The most important rule is that your code be modular

and layered. This rule applies to code and to data.

Here are the details. Your program will be composed

of one or more source files. Each file represents one

component of the program. Each file consists of one

or more functions, each represents one component of

the file.

In our first big example in lecture two, we build a ver-

sion of the Unix who command. This program con-

sists of two files: a main file with logic to read and

process user login records and a buffering library file

to perform low-level data input from the disk. That

main function contained a loop to read and display

data. The code to display the data was at a lower

layer in its own function, and the code to display the

date and time was at a yet lower level also in its own

function.

This separation of the solution into functional units

([a] main logic and [b] low-level buffering) is what we

mean by modularity. The term layering refers to

keeping each level in the solution in its own module.

The main program knows it will be able to read login

records from the disk but does not care about the de-

tails of how that gets done. The low-level disk buffer-

ing code has one job: read disk data in chunks from

the disk and deliver disk records in smaller units to its

client. The low-level buffering code does not care

what its client does with the data.

NO GLOBAL VARIABLES: "Modularity and layering"

also applies to variables. Each function uses local

variables to do its work. Local variables appear when

the function is called and vanish when the function

ends. A file may have static state variables that are

shared by the functions in that file. Av oid Global

Variables: there is rarely any reason to make data

shared by all functions in a program. Global variables

undermine modularity and layering. The best way for

functions to communicate is through the pass values

in, return a value back mechanism.

Design your programs as collections of layers/mod-

ules. Implement each module as a separate file. This

makes your code more reusable, testable, maintain-

able.

6 Nov 2021 page 3

Homework Standards

Rule 2: Short Functions: 30 lines max

The principles of modularity and layering also apply

to the contents of each file. A file contains functions.

Each function must do one thing and express one

layer of abstraction of the solution.

A function must be short enough to be viewed and un-

derstood in a single terminal window. Thus: no more

than 30 lines tall and no more than 80 columns wide.

We grade homework with your code in one window

and a grading scorecard in another. Those two win-

dows must fit side by side on one screen.

If a function is too long, it is probably doing too

much. That extra work adds complexity and increases

the chance of errors. If a function gets too long, split

it into smaller functions, each with a specific purpose

and a specific level of abstraction. Writing short func-

tions can take a lot of effort. The work is worth it.

Rule 3: Comments: File, Function, Paragraph

Comments are written by the programmer for

him/herself to plan and review code and also for the

next programmer who has to use and/or maintain the

code. Clear writing helps produce clear code.

File Comments A file is a module that implements

one component of your solution. The top of each

code file must contain a summary of the title, purpose,

main features of the module, and brief descriptions of

the data structures used by that module.

Say you are a new person on a team and are given a

module to debug or extend. You could read the code

to try to figure out what the programmer was doing,

or you could read a nicely written description of the

module -- a `quick start guide´ -- and understand the

module quickly and easily. Which one would you

prefer to do? Guess which one we, as graders and

teachers, prefer.

Function Comments A function is a module within a

module. Every function has a specific purpose. Pre-

cede each function by a comment that includes:

/* is_logname_valid(const char *s)
* purpose: determine if string represents
* a valid logname on system
* args: string
* rets: 1 if true, 0 if not
* note: this function ignores case
*/

int is_logname_valid(const char *s)

A function is a black box that is passed data, does

something, and returns a result. The function

comment describes the interface. The code should be

short enough and clear enough so the actual algorithm

does not get described in the function comments. But,

any subtle logic or special handling that is not clear

deserves a brief description. Reading code should not

be the same as reading a mystery novel. Spell out

what is going on.

Internal Comments As just mentioned, in a 30-line

function with clear layout (see below) and good nam-

ing, the logic is usually pretty easy to follow. None-

theless, please add brief comments as needed to help

the reader see any important or tricky steps.

Rule 4: Spaces, Blank Lines, Indenting

Use Spaces: Donotwritecodethatlookslikethis.

Instead, use space characters to separate words and

operators. By doing so, you save the reader the extra

work of parsing your code into words and operators.

Consider:

/* not readable */

if(x->prev->val<=x->val||p!=x)

/* much better */
if (x->prev->val <= x->val || p != x)

Got it?

Use Blank Lines: Just as blank spaces between words

and operators increases readability horizontally, blank

lines between paragraphs increases readabililty verti-

cally. Imagine if the document you are now reading

were written without any blank lines between para-

graphs.

Indent 8 spaces (4 if you insist) All conditional

blocks, function bodies, loop bodies, etc, must be in-

dented relative to the control line. Please use 8 char

tabs (or 4 if you object to 8). Never fewer. Use tabs

or spaces as you please but be consistent.

Rule 5: Clear, Concise Names

Function names and variable names must be explana-

tory but not verbose. For example:

num_users

is fine but

number_of_users_logged_in

is too wordy.

CamelCase is ok, but please be consistent. Mixing

mixed case and all lowercase reduces readability.

6 Nov 2021 page 4

CSCI-E28 Assignment 0 Not to be turned in

Introduction

The purpose of this assignment is to review basic Unix and C skills and help you figure out if you are pre-

pared for this course. Work through the following exercises. You should of course feel free to refer to any

Unix/C books and/or on-line documentation you like. You should find the C exercises pretty easy. If you

don’t, think carefully before enrolling. You should find the Unix exercises easy or you should be able to

locate the information in the manuals. If you don’t, find a good Unix book and start exploring.

Solutions to these problems will be available at the second lecture.

The Exercises

1. Explain the purpose of the following Unix commands: ls, cat, rm, cp, mv, mkdir, cc.

2. Using your favorite editor, create a small text file. Use cat to create another file consisting of five rep-

etitions of this small text file.

Use wc to count the number of characters and words in the original file and in the one you made from

it. Explain the result.

Create a subdirectory and move the two files into it.

3. Create a file containing a directory listing of both your home directory and the directory /bin.

4. Devise a single command line that displays the number of users currently logged onto your system.

5. Write, compile, and execute a C program that prints a welcoming message of your choice.

6. Write, compile, and execute a C program that prints its arguments.

7. Using getchar() write a program that counts the number of words, lines, and characters in its input.

8. Create a file containing a C function that prints the message "hello, world". Create a separate

file containing the main program which calls this function. Compile and link the resulting program,

calling it hw.

9. Look up the entries for the following topics in your system’s manual; the cat command, the printf
function, and the write system call.

10. You Must Try This One There are two parts to the problem. If you are not able to do the first part of

this problem, you are not prepared to take this class. If you find the second part extremely tricky, you

will find the assignments for the course difficult and potentially more time consuming than you expect.

part 1 Write a program that prints a range of lines from a text file. The program should take

command line arguments of the form:

lrange 10 20 filename

will print lines 10 through 20 of the named file. If there are not enough lines in the

file, the program should print what it can.

part 2 Write a program called last10 that prints the last ten lines of a text file. The pro-

gram can be used from the command line with:

last10 filename or

last10

If there is no filename, last10 processes standard input.

11. Structs and Pointers You must try this one, too. Write a function that computes some basic statistics

for a list of numbers and stores those results in parts of a struct. In particular, giv en this definition:

struct numlist { float *list; /* points to list of numbers */
int len; /* number of items in list */
float min, /* the minimal value in list */

max, /* the maximal value in list */
avg; /* the mean of the numbers */

};

write a function compute_stats(struct numlist *listptr) that takes as an argument a

pointer to a struct numlist with list and len already initialized and computes and fills in the other three

members.

continued →

CSCI-E28 Skill Assessment Exercises page 2

12. Dynamic memory management: Write a C program that reads in an arbitrary number of lines then

prints those lines in reverse order. The lengths of the lines may be limited to a fixed maximum. but the

number of lines is limited only by system memory available. For a slightly greater challenge, print

each line in reverse.

